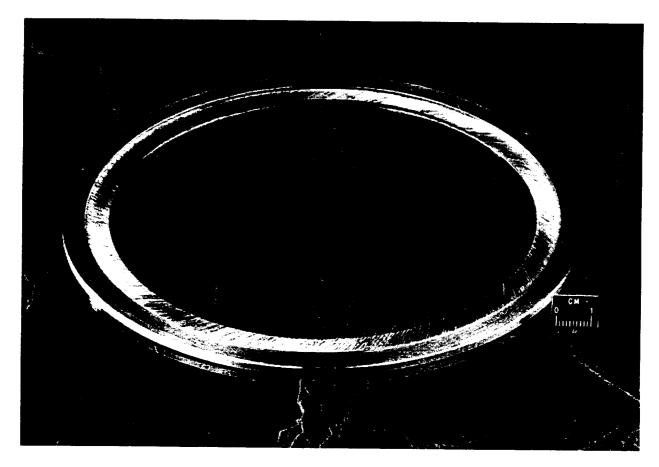
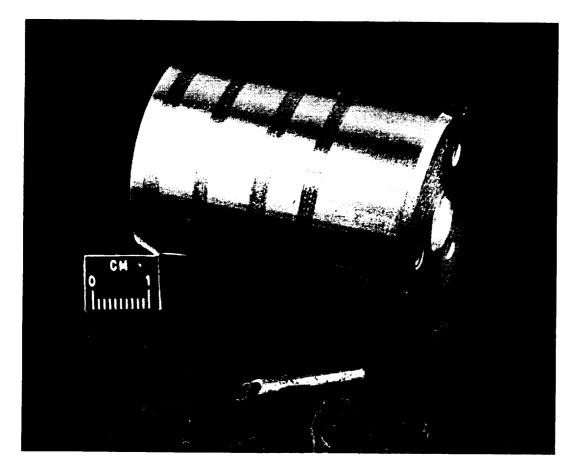
TRIBOLOGICAL TUFT TESTING OF CANDIDATE BRUSH SEAL MATERIALS


Chris DellaCorte NASA Glenn Research Center Cleveland, Ohio

571-37 421041

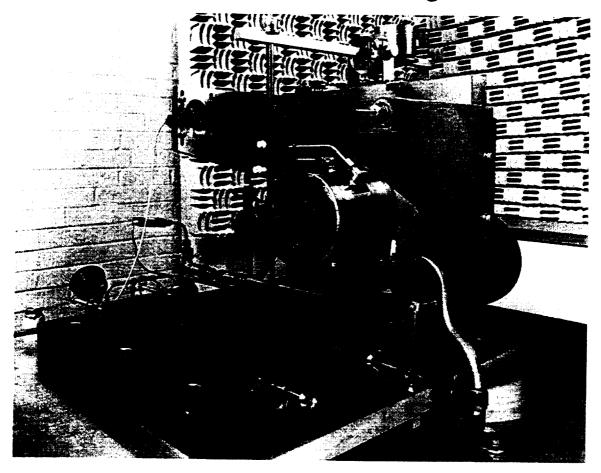
Research Goals

- Develop test method to tribologically brush seal materials
- Evaluate materials to identify potential improvements and trends
- Guide seal material development and selection


Turbine Engine Brush Seal

CD-98-77932

Photograph of typical brush seal


Brush Seal Simulation Specimens

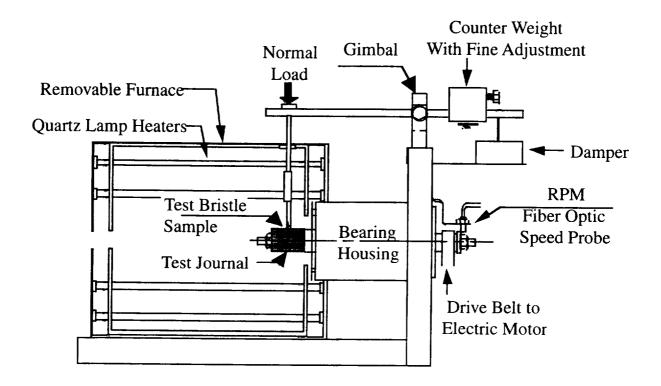
CD-98-77933

Tuft (lower) and journal (upper) specimens used to simulate brush seal/shaft sliding contact. Note that tuft wears groove into shaft surface.

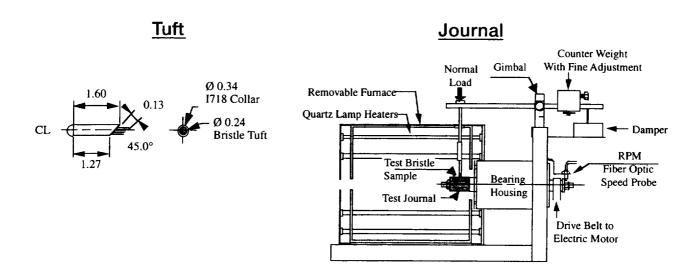
Brush Seal Tuft Test Rig

CD-98-77934

Photograph of high temperature (1400°F) tuft test rig showing specimen arrangement for testing.


Comparison of Simulation to Seal

Characteristic	Brush Seal	Tuft Test		
Loads	0-20 psi (variable)	1-20 psi (constant)		
Speeds	≈ 1000 ft/sec	≈ 100 ft/sec		
Temperatures	75 - 1200°F +	75 - 1400°F +		
Tribological	?	Friction Forces Wear Data		


CD-98-77935

The tuft test can simulate most of the sliding conditions encountered by brush seals. In addition, friction and wear can be easily measured.

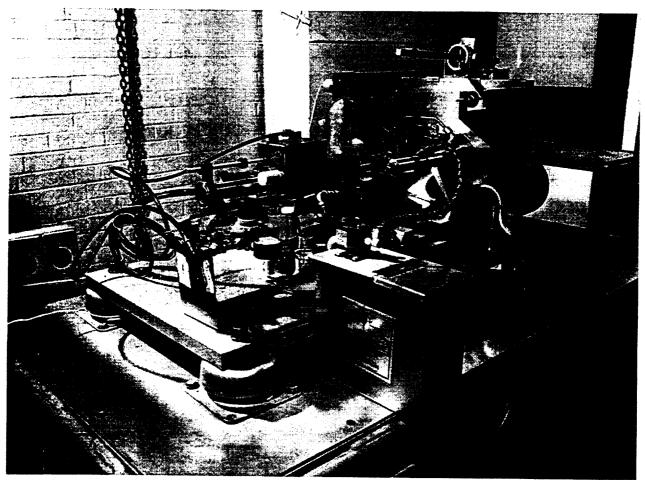
Schematic of Tuft Test Rig

Test Specimens

CD-98-77937

Tuft sample is made by packing 960 wires into an Inconel collar. The wires are held in place by welding followed by grinding of the tuft surface to a 45° angle.

Brush Specimen Configuration


Chemical Composition of Wire Samples (wt.%)

	Co	Ni	Cr	Fe	W	Мо	OTHERS (< 6 wt.%)
H25	51	10	20	3	15		Mn, Si, C
I718		52.5	19	18.5	_	3	Nb, Ti, Al, C, Cu
H230	5	52.7	22	3	14	2	Si, Mn, C, Al, B, La
H242	2.5	60	8	2	_	25	Mn, Cu, Al, Si, C, B

Operational Issues

- Vibrations
 - Interfere with accurate data collection and results in variable load
- Solution (s)
 - Add dashpot damper
 - Eliminate run-out using in place grinding system

In-place Grinding System

CD-98-77940

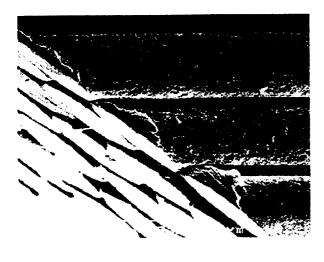
With this set-up, as coated journal specimens are mounted to the test rig shaft. In-place grinding, shown here, eliminates run-out and ensures a vibration free test.

Results Review

Testing of Solid Lubricant Coatings

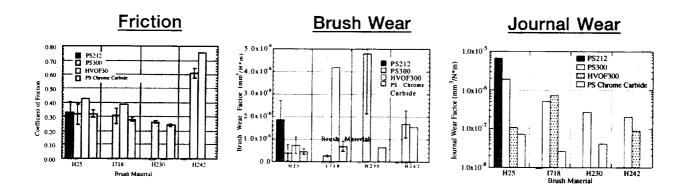
Coating Compositions by Weight and Percent Volume of PS212, PS300, HVOF300

Coating	Constituent, wt.% (vol. %)							
Designation	Ni-Co-Cr ₂ C ₃ *	NiCr-Cr ₂ O ₃ **	Ag	BaF ₂ /CaF ₂				
PS212	70 (67)		15 (9)	15 (24)				
PS300 and HVOF300		80 (80)	10 (6)	10 (14)				


^{*} By wt.% contains 54 Cr₂C₃, 28 Ni, 12 Co, 2 Mo, 2 Al, 1 B, and 1 Si

^{**}By wt.% contains 80 $\operatorname{Cr_2O_3}$, 16 Ni, and 4 Cr refs. 4, 5, and 6

Typical Surface Appearance



CD-98-77942

Note that the surface features observed after tuft testing match those seen in brush seals. This lends confidence in the relevance of the tuft results.

Tribological Data (1200°F)

CD-98-77943

Friction and wear data summary shows that the choice of wire material has a significant effect on friction. Journal coating can have a dramatic effect on both brush and journal wear.

Data Summary

- Friction largely unaffected by coatings
- Wear of "standard" materials better than "lubricated" coatings
- Data may be influenced by coating microstructure

Summary

- Tuft test excellent screening tool
- Wear data suggests an improvement in 2 + orders of magnitude desired for long life of interference fit
- Tester capable of 1400°F + making it ideal for selection of alternate wire materials (e.g. ceramics)

Relevant Publications

"Preliminary Tuft Testing of Metallic Bristles Versus PS212, PS300, and HVOF300"
NASA TM 107522

"High Temperature Brush Seal Tuft Testing of Selected Nickel-Chrome and Colbalt Superalloys"
NASA TM 107497

"A New Tribological Test for Candidate Brush Seal Materials Evaluation"
NASA TM 106753